

Development of an inflight centrifuge screw pile installation & loading system

Therar A.H. Albaghdadi, Michael J. Brown & Jonathan A. Knappett

Division of Civil Engineering, University of Dundee, UK

Aims and objectives

- A novel approach, using screw piles (scale up geometry) for offshore wind turbine foundations.
- Numerical modelling
 - FEA 2D & 3D
- Physical modelling
 - Develop 2D servo actuator.
 - Installation of screw piles models in flight.
 - Axial loading tests in centrifuge (compression & tension).

Installation of onshore screw pile (photo courtesy of Iron Brothers Ltd.)

Upscaling onshore screw piles for offshore use

Benefits over driven piles

- Low noise and vibration
- Relatively high capacity as soil-soil shear mobilized (low flange spacing)

Geometry optimisation

- Uncertainties over upscaling
- Predicting torque requirements for infrastructure investment
- Optimising lateral performance numerical modelling (Al-Baghdadi et al 2015)

Previous studies at the University of Dundee

Ig lab test (compression)

- Optimization of flanges spacing ratio (S/D_f)
- Screw pile performance under cyclic axial and lateral loading

Numerical Modelling (FEA- 2D Plaxis)

- S/Df and Df/Dp ratios optimization
- Reduce in the capacity with reducing D_f/D_p

Numerical modelling of screw piles

Numerical Modelling (FEA- 3D Plaxis)

- Enhance the lateral capacity
- Near surface flange effect (up to 22% increase)
- V-H combined loading

Problems with Ig and numerical modelling (FEA)

- Ig lab test: scaling problems (low soil stress)
- FEA: screw pile wished in place (installation cannot be modelled)

Centrifuge modelling of screw piles

Centrifuge modelling of screw piles with single installation and loading operation

In flight installation

- Predicting realistic installation force and torque
- Previous studies showed that Ig installation can reduce the capacity up to 50%

Centrifuge tests results of straight shafted piles installed in dense sand (Ko et al., 1984)

2-D servo-motor actuator system

2D actuator system for centrifuge modelling (Vertical and rotational servo actuator system)

System specification

- Weight 131 kg
- Height 0.8m
- Max. stroke 300 mm
- Max. vertical speed 1.67 mm/s
- Max. torque 30 N.m
- Max. capacity ±10 kN

Centrifuge modelling of screw pile

Control system

- Servo control system
 - Servo motor controller (cRIO-9024)
 - AKD servo motor drivers (AKD Drivers)
 - 2 Servo motors (AKM54H & AKM53H)
 - NI Labview software 2013
 - NI-RIO 13.0 and NI soft motion module

- Data acquisition system (DAQ)
 - Fylde micro analog 2 modular instrument (FE-MM8)
 - Up to 8 transducers (2.5V 10V)
 - Wide rage of single amplifier (1-5000)

Centrifuge cabin

DUNDEE

2-D servo-motor actuator system

Problems with centrifuge modelling with single installation and loading operation

Cable problem: Centrifuge test at 10 g level

Novatech F310-Z axial force and torque transducer (±20kN & 30Nm)

- Worked during I-g test trials
- Problem at high g level (cable trapped due to increase cable self weight)

2-D servo-motor actuator system

Problems with centrifuge modelling with single installation and loading operation

Centrifuge test at 20, 40 & 50 g level

- The cable was pre-coiled
- Using convoluted cable sleeving to guide the cable)
- Developing a new system using a slip-ring (for future centrifuge tests)

Screw pile model

DUNDEE

Centrifuge testing of screw piles

Problems with centrifuge modelling with single installation and loading operation

• Screw pile model damage problem:

Screw pile damaged after penetration of 280 mm in dense sand (Dr 85%) at 22g D_P = (3-6)mm; D_f = (10-20)mm; t_f = 0.75 mm Flanges no. = 3; S/D_f =3

(Tsuha et al., 2013)

Screw pile damaged after penetration of 200 mm in dense sand (Dr 73%) at 50g. $D_p=10 \text{ mm}$; $D_f=25 \text{ mm}$; $t_f=1.4 \text{ mm}$

Flanges no. = 7; $S/D_f = I$

Problems with centrifuge modelling with single installation and loading operation

Installation force and torque of screw pile with penetration of 200 mm in dense sand (Dr 73%) at 50g.

 $D_p=10 \text{ mm}$

D_f= 25 mm

Embedment depth = 200 mm

Total length = 400 mm

- I. Increasing the g level up to 50g
- 2. The centrifuge stabilised at 50 g
- 3. Installation of the screw pile to 200mm
- 4. Installation ends

- 5. Start of compression test
- 6. End of compression test
- 7. Start of tension test

Centrifuge testing of screw piles in dense sand (I_D=73%)

• Empirical factor

$$Q_u = K.T$$

Hoyt & Clemence (1989)

Field tests of screw piles under compression load (Sakr, 2010)

 K_c varied (6.5 - 9.6) m⁻¹ with decrease shaft and flange diameter from $D_p = 0.508$ m and $D_f = 1.016$ m to $D_p = 0.324$ m and $D_f = 0.762$ m respectively.

Screw pile capacities at prototype scale

g level	Shaft dia., D _{f} (m)	Flange dia., D _f (m)	Spacing ratio, S/D _f	Capacity in compression, $Q_{f c}$ (kN)	Installation Torque, T (kN.m)	Empirical factor, K _c m ⁻¹
40	0.4	1.0	1.0	5690	788.7	7.2
20	0.2	0.5	1.0	1329	72.5	18.3

Effect of flange diameter to screw pile shaft diameter (at 50 g level)

- Single flange at the bottom
- Normalized flange diameter (D_f/D_D)

Effect of flanges spacing ratio (S/D_f)

- FE 2D Plaxis
- Centrifuge tests (Dr = 73%)
- Flange spacing optimization (S/D_f) ≈ 2.0

Development of an inflight centrifuge screw pile installation & loading system

Conclusions:

- Develop a new servo control system at the University of Dundee.
- Carry out centrifuge tests on screw pile models at high g level (50 g) in one single operation.
- High capacity can be applied (±10 kN & 30 N.m).
- The empirical factor (Kc) was increased with decreasing the shaft and flange diameter of the screw pile.
- The optimum flange spacing ratio (S/D_f) was found to be about 2.0 (compression).

Thank you for your attention!

References

Al-Baghdadi TA, Brown M, Knappett J & Ishikura R (2015) <u>Modelling of laterally</u> <u>loaded screw piles with large helical plates in sand.</u> 3rd Int. Symp. on Frontiers in Offshore Geotechnics. 10 -12 June 2015, Oslo, Norway

Knappett J, Brown M, Brennan AJ & Hamilton L (2014) Optimising the compressive behaviour of screw piles in sand for marine renewable energy applications. Int. Conf. On Piling & Deep Foundations, Stockholm, Sweden, 21st-23rd May 2014.

Ko, H. Y., Atkinson, R. H., Goble, G. G., & Ealy, C. D. (1984). <u>Cenrifugal modelling of pile foundations</u>. *Analysis and Design of Pile Foundations (ed. J.R. Meyer)*, 21-40. ASCE.

Tsuha CH, Thorel L & Rault G (2013) A review of centrifuge model tests of helical foundations. Ist International Geotechnical Symposium on Helical Foundations. Boston, 8-10 August 2013.